INTRINSIC DIASTEREOISOMERISM IN 13 C SPECTRA. A STUDY OF THE ROTAMERS OF 2,3-DIBROMO-2-CHLORO-3-METHYLBUTANE

William Roy Jackson and Sirinant Thapebinkarn

Department of Chemistry, Monash University, Clayton, Victoria 3168 Australia (Received in UK 29 January 1975; accepted for publication 5 March 1975)

Examination of low temperature (-60°) ¹³C n.m.r. spectra of 2,3-dibromo-2-chloro-3-methylbutane (1) shows that intrinsic non-equivalence may be considerable for ¹³C nuclei. Previous work has shown that although intrinsic diastereoisomerism is usually small for ¹H spectra ¹ it may contribute significantly to the spectra of ¹⁹F nuclei. ² The study of conformational preference in molecules presumes that the intrinsic contribution to chemical shift non-equivalence is small ³ and as ¹³C spectra are now being used for this purpose ⁴ it became necessary to investigate whether this presumption was correct.

The 1 H spectra of (1) in CCl $_4$, CDCl $_3$, CH $_2$ Cl $_2$ and CS $_2$ show the <u>geminal</u> methyl groups to be non-equivalent by <u>ca.</u> 0.04 ppm at 30°. Spectra at -60° in these solvents were interpretable in terms of slow isolation around the C $_2$ -C $_3$ bond 5 and showed signals for the three rotamers I, II and III. The observation of three rather than six absorptions for the

geminal methyl groups is again consistent with a low contribution of intrinsic diastereoisomerism to $^1{\rm H}$ spectra, i.e. δ Me $_a$ 1 \simeq δ Me $_b$ $^{\rm III}$ etc.

13°C N.m.r. spectra at ambient temperature showed the geminal methyls to be non-equivalent by values of 0.65, 0.90 and 0.68 ppm in CDCl₃, CH₂Cl₂ and CS₂ respectively. Spectra at -60° showed three pairs of absorptions in each solvent, thus indicating that intrinsic diastereo-isomerism was significant for ¹³C spectra. The rotamers were present in ratio <u>ca</u>.

1(I): 3(II): 5(III). Structure and chemical shift assignments were made using previous

techniques and led to the tabulated values.

Solvents	I a	I _b	II _a	II _b	IIIa	III
CDC1 ₃	29.25	29.17	28.25	32.63	32.25	30.90
CH ₂ Cl ₂	29.75	28.94	28.43	33.58	32.35	31.59
cs ₂	30.12	29.21	28.71	33.15	32.60	31.32

Chemical Shift Values for the Geminal Methyl Carbons in I

The intrinsic diastereoisomerism is thus calculated to be 0.98 (CDCl $_3$), 1.17 (CH $_2$ Cl $_2$) and 0.75 (CS $_2$) ppm using the method of Raban. These figures suggest that the intrinsic contribution is dominant in the overall 13 C chemical shift non-equivalence of the geminal methyl groups of (1) at ambient temperature.

Acknowledgments

We thank the Colombo Plan and the Government of Thailand for a scholarship to S.T. and Marshall Hughes for spectrometer operation and assistance.

References

- 1. G. Binsch, J. Amer. chem. Soc., 1969, 91, 3999.
- 2. M. Raban, Tetrahedron Letters, 1966, 3105.
- See e.g. D.E.F. Gracey, W. R. Jackson, W. B. Jennings, S. C. Rennison, and R. Spratt,
 J. Chem. Soc. (B), 1969, 1210.
- 4. E. W. Randall, E. Rosenberg and L. Milone, J. Chem. Soc. Dalton, 1973, 1672.
- See B. L. Hawkins, W. Bremser, S. Borcic and J. D. Roberts, <u>J. Amer. chem. Soc.</u>, 1971, 93, 4472.
- R. A. Newmark and C. H. Sederholm, <u>J. Chem. Phys.</u>, 1963, <u>39</u>, 3131.

Measured downfield from TMS for 2.0 M solutions using a Bruker WH 90 spectrometer operating at 22.63 MHz. Spectra did not vary significantly for solutions 0.5 - 2.0 M in CDCl₃.